Kiana Hernandez is a young woman who opted out of a standardized test last spring. She had her reasons, as the Mother Jones article about her details, but that’s not what interests me about her story. What grabbed me is the reading instruction she received—or endured:
She’d failed the Florida reading test every year since sixth grade and had been placed in remedial classes where she was drilled on basic skills, like reading paragraphs to find the topic sentence and then filling in the right bubbles on a practice test. She didn’t get to read whole books like her peers in the regular class or practice her writing, analysis, and debating—skills she would need for the political science degree she dreamed of, or for the school board candidacy that she envisioned.
I am not against testing—I think it is critical to closing the achievement gap. But I am opposed to the stakes being so high that otherwise-reasonable people put kids’ scores above their education. And I’m opposed to expecting students to take tests for which they have not been prepared. Hernandez has been cheated, as have millions of other needy students.
As one teacher quoted in the article put it, giving low-income students “random passages” to “practice picking the correct multiple-choice” answer is “very separate and unequal.”
This is the Core Knowledge blog, so you know what students need. Let’s jump to a great new resource.
A terrific author for the middle grades, Joy Hakim, has just published an eBook: Reading Science Stories. It’s a marvelous resource for English, history, and science teachers looking for narrative nonfiction—or perhaps a starting place for collaborating on an interdisciplinary project.
Here’s the beginning of one of my favorite chapters, “A Boy with Something on His Mind”:
Fifteen-year-old Albert Einstein is miserable. He is trying to finish high school in Germany, but he hates the school; it’s a strict, rigid place. To make things worse, his parents have moved to Italy. They think he should stay behind until his schooling is completed. It isn’t long, though, before he is on his way over the Alps, heading south to join them. Why does he leave Germany? Today, no one is quite sure, but a letter from the school offers a powerful clue: “Your presence in the class is disruptive and affects the other students.”
What are the Einsteins to do with their son? He is a high school dropout who has arrived without warning.
In Milan, Italy, Albert’s father owns a factory that builds parts for machines—called dynamos—which take energy from coal, oil, or mountain streams and convert it into electrical power. A dynamo can turn the lights on in a village. It is 1895, and electric lights are a new thing—and so is all the electrical technology that is fueling the Industrial Revolution.
Albert is going to take the world way beyond the Industrial Revolution. He will bring about a new scientific age. But no one knows that now. His parents keep urging him to get serious about school. Hanging around the factory may be fun and a terrific way to learn about the exciting electrical machinery, but it isn’t enough in the fast-changing world at the end of the nineteenth century. His father suggests that Albert forget his “philosophical nonsense.” He needs a degree.
While everyone in the family is worrying about his future, young Einstein’s mind is somewhere else. There is a question that won’t leave his head. “What would the world look like if I could sit on a beam of light?” he keeps asking himself.
It becomes an obsession, trying to hang on to the light beam. And, because light travels through space at 299,792.5 kilometers per second (or 186,282 miles per second), it also means that in less than a second, Albert will leave the Earth and its atmosphere. What are time and space and matter like out in the vastness of the universe? No one can help him answer that, because no one knows what happens at the speed of light.
Einstein may not realize it, but he is thinking about the scientific question of his age: Why does light—which is electromagnetic radiation—behave the way it does? Light doesn’t seem to follow the same laws of motion—Isaac Newton’s laws—that guide a baseball when you pitch it. Most people at the end of the nineteenth century don’t know that this incompatibility is creating a kind of crisis in scientific thinking. Newton’s laws of motion work wonderfully well in our everyday world. Electromagnetic laws, established by James Clerk Maxwell, work wonderfully well, too. But electromagnetism is leading science beyond the everyday. It is opening the whole universe to consideration. And physicists have found that where there is an overlap between Newton’s science and electromagnetic science, there seems to be an incongruity. Isaac Newton’s laws and James Clerk Maxwell’s laws can’t both be right—at least not completely right. Hardly anyone is bothered by this, except for a few physicists and a 15-year-old thinker.
Hungry for more? Hakim has all of chapter one, “Take a Number,” and ordering information on her website.

Kiana Hernandez didn’t need to drill strategies with random texts. She needed rich, informative texts that would build her knowledge and vocabulary while she practiced essential skills. (Image courtesy of Shutterstock.)

Personalized pacing (with safeguards) and personalized content are very different things (image courtesy of 


